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Abstract. For the non-linear ordinary differential equation in the radial component of the 
probability density discussed by Kostin, a general solution is obtained. This solution is a 
homogeneous function of two linearly independent functions satisfying a certain associated 
linear homogeneous equation. 

1. Introduction 

From the Schrodinger equation for a complex wavefunction, Kostin [ 1 1  derives the 
following non-linear differential equation for the probability density P(r ,  6, 4 )  in 
quantum theory: 

( l . l a )  PV2P= (4m/h2)(  V -  E ) P 2 + i V P .  V P + ( 2 m 2 / h 2 ) J .  J 

where the probability current density vector is given by 

J = (ih/2m)[$V$* - $*V$]. (1.lb) 

Applying the above result for the motion of a particle in a centrally symmetric field, 
he further obtains the second-order non-linear ordinary differential equation in R ( r ) :  

L ,  R = 4R”R -’ + (2m2/ h 2 )  Jf R - ’  RI= d R / d r  (1.2) 

where R (  r )  and J,( r )  are the components of the probability density and the probability 
current density vector, respectively, in the radial direction, L, h and m are constants, 
E is a degenerate eigenvalue of the Hamiltonian operator of the Schrodinger equation 
and Lk represents the linear differential operator 

(1.3) 

When J,  = 0 or the wavefunction is real, the equation corresponding to (1.2) is 

L , R  = i R ” R - ’ .  (1.4) 

For the case J ,#O,  noting that r2Jr(r )  is constant, Kostin introduces the radial 
distribution function p ( r )  = 4 r r 2 R ( r )  as the new dependent variable and discusses the 
solutions of (1.2) and (1.4) in terms of the solutions of equivalent third-order linear 
differential equations in p (  r )  and R ( r ) ,  respectively. 
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The aim of this paper is to find the general solutions of ( 1 . 2 )  and ( 1 . 4 )  as real 
functions of two linearly independent solutions of the associated linear homogeneous 
equation 

L , , 2 R  = 0 ( 1 . 5 )  

which is the radial Schrodinger equation. We note that equation ( 1 . 2 )  is analogous to 
the one which we would have to solve if, in a one-dimensional problem, a particle of 
mass m were to move with an  appropriate effective potential. 

It is well known in scattering theory that the phase shift is given in terms of the 
logarithmic derivative P I  of the solution of ( 1 . 5 ) .  It may be pointed out here that the 
constant r2J, is closely connected with P I  (see, for example, [ 2 ] ) .  

2. Some preliminary results 

The author [ 3 ]  has discussed recently the solutions of some classes of second-order 
non-linear ordinary differential equations of the form 

j;+p(t)u);+q(t)y=pu); 'y- '+f(t)y" p # 1 ,  n # 1 ( 2 . 1 )  

where p ( t )  and q ( t )  are known functions and the dots denote differentiation with 
respect to the independent variable t. The solutions are obtained as homogeneous 
functions of two linearly independent solutions U( t )  and u (  t )  of the associated linear 
equation 

j;+p(t)u);+(l - p ) q ( t ) y = O  ( 2 . 2 )  

under different constraints on the function f( 1 ) .  If W (  U, U )  = uu - uti is the Wronskian 
and 

F ( t ) =  p ( t ) d t  ( 2 . 3 )  I' 
then we have the following result due to Abel [ 4 ] :  

W (  U, U )  exp( F (  t ) )  = constant = C,(say). ( 2 . 4 )  

C ,  is a definite non-zero constant, called the Abel constant, once the solutions U and 
U of ( 2 . 2 )  are chosen. 

We now recall the following two theorems from [ 3 ] .  

Theorem 1. The general solution of the equation 

j ; + p ( t ) j t + q ( t ) y  = t ( n + 3 ) j 2 y - ' + p  exp(-2F)yn  

is given by the function 
( 2 . 5 )  

(2.6) 

/3 # 0, n # 1 

y = ( a ~ ~ + Z b u u + c u ~ ) ~ ' " - " '  a c  - b' = (1 - n ) P / 4 C i  

where a, b and c are constants, two of which are arbitrary, and U and U are two linearly 
independent solutions of ( 2 . 2 )  where p = ( n  + 3 ) / 4 .  

It is seen here that the solutions given earlier by Eliezer and Gray [ 5 ]  for ( 2 . 5 )  for the 
case n = -3 follows from ( 2 . 6 )  where C, is given by ( 2 . 4 ) .  

Corresponding to the case /3 t 0 in ( 2 . 5 ) ,  the result is given by the following theorem. 
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Theorem 2. If U and U are two linearly independent solutions of (2.2), the complete 
solution of the class of equations 

Y + P ( r ) Y + q ( t ) Y = P Y 2 Y - ’  w + 1  (2.7) 
is y = (Au + BU)”“-~’) where A and B are arbitrary constants. We will be using these 
results in our subsequent discussions. 

3. Solutions 

Let u ( r )  and u ( r )  be two linearly independent real functions and let 

U (  r )  = U( r )  +iu(r)  (3.1) 

be a solution of the linear differential equation 

L,,,R = 0 (3.2) 
which is the radial Schrodinger equation whose coefficients are real functions of r. 
Hence we find that U (  = U -iu), U and U are also solutions of (3.2). Let W ( u ,  U )  be 
the Wronskian and C,. the corresponding Abel constant. Abel’s result for this case is 

W (  U, v )  exp( F (  r ) )  = C, F (  r )  = 2 log r. (3.3) 
From the definition J,  = (ih/2m)[ U 0 ’ -  0 U ’ ]  where the primes denote differentiation 
with respect to r and the relations (3.1) and (3.3) we obtain 

r2Jr = -C,h /m 

J s  = C t . h 2  exp(-2F)m-*. 
(3.4) 

Substituting for J,,  equation (1.2) becomes 

LIR = $R”R-’ + 2 C t .  exp(-ZF)R-’. (3.5) 
This equation is of the form (2.5) where n = -1 and p = 2C;. The corresponding 
associated equation is (3.2). Hence, from theorem 1, the general solution of Kostin’s 
equation (3.5) is 

(3.6) 2 R = au2 + 2buv + cu2 a c - b  = 1  

where a, b and c are constants, two of which are arbitrary. Since R > 0 and U and U 
are real, it follows that the constants in (3.6) must be real. 

Again we find that Kostin’s equation (1.4) is in the form (2.7) where p = 4. The 
corresponding associated equation is also (3.2) whose linearly independent real 
solutions are U and U. Hence the general solution of (1.4) is 

R = (Au + B u ) ~  (3.7) 
where A and B are real arbitrary constants. This solution had been obtained earlier 
by Burt and Reid [6]. 
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