General solution of Kostin's equation arising in quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 205935
(http://iopscience.iop.org/0305-4470/20/17/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:33

Please note that terms and conditions apply.

General solution of Kostin's equation arising in quantum mechanics

P V Ranganathan

Department of Mathematics, Ramakrishna Mission Vivekananda Callege, Madras 600004, India

Received 22 April 1987, in final form 6 July 1987

Abstract

For the non-linear ordinary differential equation in the radial component of the probability density discussed by Kostin, a general solution is obtained. This solution is a homogeneous function of two linearly independent functions satisfying a certain associated linear homogeneous equation.

1. Introduction

From the Schrödinger equation for a complex wavefunction, Kostin [1] derives the following non-linear differential equation for the probability density $P(r, \theta, \phi)$ in quantum theory:

$$
\begin{equation*}
P \nabla^{2} P=\left(4 m / \hbar^{2}\right)(V-E) P^{2}+\frac{1}{2} \nabla P \cdot \nabla P+\left(2 m^{2} / \hbar^{2}\right) J \cdot J \tag{1.1a}
\end{equation*}
$$

where the probability current density vector is given by

$$
\begin{equation*}
J=(\mathrm{i} \hbar / 2 m)\left[\psi \nabla \psi^{*}-\psi^{*} \nabla \psi\right] . \tag{1.1b}
\end{equation*}
$$

Applying the above result for the motion of a particle in a centrally symmetric field, he further obtains the second-order non-linear ordinary differential equation in $R(r)$:

$$
\begin{equation*}
L_{1} R=\frac{1}{2} R^{\prime 2} R^{-1}+\left(2 m^{2} / \hbar^{2}\right) J_{r}^{2} R^{-1} \quad R^{\prime}=\mathrm{d} R / \mathrm{d} r \tag{1.2}
\end{equation*}
$$

where $R(r)$ and $J_{r}(r)$ are the components of the probability density and the probability current density vector, respectively, in the radial direction, L, \hbar and m are constants, E is a degenerate eigenvalue of the Hamiltonian operator of the Schrödinger equation and L_{k} represents the linear differential operator

$$
\begin{equation*}
L_{k}=\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-k\left(\frac{2 L(L+1)}{r^{2}}+\frac{4 m}{\hbar^{2}}(V(r)-E)\right) . \tag{1.3}
\end{equation*}
$$

When $J_{r}=0$ or the wavefunction is real, the equation corresponding to (1.2) is

$$
\begin{equation*}
L_{1} R=\frac{1}{2} R^{\prime 2} R^{-1} . \tag{1.4}
\end{equation*}
$$

For the case $J_{r} \neq 0$, noting that $r^{2} J_{r}(r)$ is constant, Kostin introduces the radial distribution function $\rho(r)=4 \pi r^{2} R(r)$ as the new dependent variable and discusses the solutions of (1.2) and (1.4) in terms of the solutions of equivalent third-order linear differential equations in $\rho(r)$ and $R(r)$, respectively.

The aim of this paper is to find the general solutions of (1.2) and (1.4) as real functions of two linearly independent solutions of the associated linear homogeneous equation

$$
\begin{equation*}
L_{1 / 2} R=0 \tag{1.5}
\end{equation*}
$$

which is the radial Schrödinger equation. We note that equation (1.2) is analogous to the one which we would have to solve if, in a one-dimensional problem, a particle of mass m were to move with an appropriate effective potential.

It is well known in scattering theory that the phase shift is given in terms of the logarithmic derivative β_{l} of the solution of (1.5). It may be pointed out here that the constant $r^{2} J_{r}$ is closely connected with β_{l} (see, for example, [2]).

2. Some preliminary results

The author [3] has discussed recently the solutions of some classes of second-order non-linear ordinary differential equations of the form

$$
\begin{equation*}
\ddot{y}+p(t) \dot{y}+q(t) y=\mu \dot{y}^{2} y^{-1}+f(t) y^{n} \quad \mu \neq 1, n \neq 1 \tag{2.1}
\end{equation*}
$$

where $p(t)$ and $q(t)$ are known functions and the dots denote differentiation with respect to the independent variable t. The solutions are obtained as homogeneous functions of two linearly independent solutions $u(t)$ and $v(t)$ of the associated linear equation

$$
\begin{equation*}
\ddot{y}+p(t) \dot{y}+(1-\mu) q(t) y=0 \tag{2.2}
\end{equation*}
$$

under different constraints on the function $f(t)$. If $W(u, v)=u \dot{u}-u \dot{v}$ is the Wronskian and

$$
\begin{equation*}
F(t)=\int^{t} p(t) \mathrm{d} t \tag{2.3}
\end{equation*}
$$

then we have the following result due to Abel [4]:

$$
\begin{equation*}
W(u, v) \exp (F(t))=\text { constant }=C_{w}(\text { say }) . \tag{2.4}
\end{equation*}
$$

C_{w} is a definite non-zero constant, called the Abel constant, once the solutions u and v of (2.2) are chosen.

We now recall the following two theorems from [3].
Theorem 1. The general solution of the equation
$\ddot{y}+p(t) \dot{y}+q(t) y=\frac{1}{4}(n+3) \dot{y}^{2} y^{-1}+\beta \exp (-2 F) y^{n} \quad \beta \neq 0, n \neq 1$
is given by the function

$$
\begin{equation*}
y=\left(a u^{2}+2 b u v+c v^{2}\right)^{2 /(1-n)} \quad a c-b^{2}=(1-n) \beta / 4 C_{w}^{2} \tag{2.6}
\end{equation*}
$$

where a, b and c are constants, two of which are arbitrary, and u and v are two linearly independent solutions of (2.2) where $\mu=(n+3) / 4$.

It is seen here that the solutions given earlier by Eliezer and Gray [5] for (2.5) for the case $n=-3$ follows from (2.6) where C_{w} is given by (2.4).

Corresponding to the case $\beta=0$ in (2.5), the result is given by the following theorem.

Theorem 2. If u and v are two linearly independent solutions of (2.2), the complete solution of the class of equations

$$
\begin{equation*}
\ddot{y}+p(t) \dot{y}+q(t) y=\mu \dot{y}^{2} y^{-1} \quad \mu \neq 1 \tag{2.7}
\end{equation*}
$$

is $y=(A u+B v)^{1 /(1-\mu)}$ where A and B are arbitrary constants. We will be using these results in our subsequent discussions.

3. Solutions

Let $u(r)$ and $v(r)$ be two linearly independent real functions and let

$$
\begin{equation*}
U(r)=u(r)+\mathrm{i} v(r) \tag{3.1}
\end{equation*}
$$

be a solution of the linear differential equation

$$
\begin{equation*}
L_{1 / 2} R=0 \tag{3.2}
\end{equation*}
$$

which is the radial Schrödinger equation whose coefficients are real functions of r. Hence we find that $\bar{U}(=u-i v), u$ and v are also solutions of (3.2). Let $W(u, v)$ be the Wronskian and C_{*} the corresponding Abel constant. Abel's result for this case is

$$
\begin{equation*}
W(u, v) \exp (F(r))=C_{w} \quad F(r)=2 \log r . \tag{3.3}
\end{equation*}
$$

From the definition $J_{r}=(\mathrm{i} \hbar / 2 m)\left[U \bar{U}^{\prime}-\bar{U} U^{\prime}\right]$ where the primes denote differentiation with respect to r and the relations (3.1) and (3.3) we obtain

$$
\begin{align*}
& r^{2} J_{r}=-C_{w} \hbar / m \\
& J_{r}^{2}=C_{w}^{2} \hbar^{2} \exp (-2 F) m^{-2} \tag{3.4}
\end{align*}
$$

Substituting for J_{r}, equation (1.2) becomes

$$
\begin{equation*}
L_{1} R=\frac{1}{2} R^{\prime 2} R^{-1}+2 C_{w}^{2} \exp (-2 F) R^{-1} . \tag{3.5}
\end{equation*}
$$

This equation is of the form (2.5) where $n=-1$ and $\beta=2 C_{w}^{2}$. The corresponding associated equation is (3.2). Hence, from theorem 1, the general solution of Kostin's equation (3.5) is

$$
\begin{equation*}
R=a u^{2}+2 b u v+c v^{2} \quad a c-b^{2}=1 \tag{3.6}
\end{equation*}
$$

where a, b and c are constants, two of which are arbitrary. Since $R>0$ and u and v are real, it follows that the constants in (3.6) must be real.

Again we find that Kostin's equation (1.4) is in the form (2.7) where $\mu=\frac{1}{2}$. The corresponding associated equation is also (3.2) whose linearly independent real solutions are u and v. Hence the general solution of (1.4) is

$$
\begin{equation*}
R=(A u+B v)^{2} \tag{3.7}
\end{equation*}
$$

where A and B are real arbitrary constants. This solution had been obtained earlier by Burt and Reid [6].

Acknowledgments

The author expresses his appreciation for the useful discussions he had with his colleague Dr K V Parthasarathy and thanks Dr R Subramanian for offering constructive suggestions. In addition, the author conveys his grateful thanks to the referees for their very useful comments.

References

[1] Kostin M D 1971 J. Chem. Phys. 54 2739-41
[2] Merzbacher E 1970 Quantum Mechanics (New York: Wiley) 2nd edn, p 236
[3] Ranganathan P V 1987 Solutions of some classes of second order nonlinear ordinary differential equations to be published
[4] Hildebrand F B 1962 Advanced Calculus for Applications (Englewood Cliffs, NJ: Prentice-Hall) p 29
[5] Eliezer C J and Gray A 1976 SIAM J. Appl. Math. 30 463-8
[6] Burt P B and Reid J L 1973 J. Chem. Phys. 582194

